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ABSTRACT 

Let ~o:[0,1]~R have continuous derivative on the closed interval [0,1], 
f~,~o(x)dx =0, and let ~ be irrational. If ~o(1)~ ~(0), then (x,y)~(x + o~,y + 
~(x)) is ergodic on R/Z x R. 

Introduction 

We shall study skew products  of the form 

T~ :R /Z  x R ~ R / Z  x R, 

T~(x, y ) =  (x + a , y  + ¢(x) ) ,  

where a is an irrational number  and ~o : R / Z ~ R  is a measurable  function. In 

what  follows, we shall have normal ized H a a r  measure  on the torus R/Z,  

Lebesgue  measure  on R and the cor responding  product  measure  A on the 

produc t  space R/Z x R. 

Suppose we are given a funct ion q~:[0,1]----~R, cont inuous  on the closed 

interval [0,1]. If we replace the map x ~ ~o(x) by x ~ ~0({x}), {x} the fractional 

part  of x, then the latter map will define a skew-product  in the above sense. In 

agreement  with this convent ion  we may state the following result: 

THEOREM. Let q~ :[0, 1]---~ R be continuously differentiable on the closed inter- 

val [0,1], let f~o q~(x )dx = 0 and suppose that ~ is irrational. 

If  ~0(1)~ ~o(0), then T~ is ergodic with respect to A. 

COROLLARY. Suppose that ~o and oc are as in the theorem. Then the [actor S~ : 

R/Z x R/Z---~R/Z x R/Z,  S~(x, y)  = (x + or, y + q~(x)) will be ergodic (with respect 
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to normalized Haar measure). In particular, if q~(x) = fix - fl/2, f l~  0 some real 

number, then S¢ will be ergodic. 

This corollary could have been deduced from a well-known result of H. 

Furstenberg ([3], theorem 2.1), but only for f l~  0 an integer. 

The proof of our theorem will use heavily results on the uniform distribution 

modulo one of the sequence ({na}),_-o (see the monograph {5]), also some 

techniques from [1], [2], [3] and [4], but it will not employ a rather "unpleasant" 

functional equation (see [1], theorem 1; [3], lemma 2.1). 

The first author wishes to thank Michael Keane (Delft) for his interest in this 

work. 

PROOF OF THE THEOREM. Let ~o and a be as in the theorem, 0 < a < 1. If n is a 

natural number, then we define 

,p.(x) = ,p(x) + ,p({x  + , ~ } ) +  . . .  + ,p({x + ( n  - 1),~}) (x E R/Z). 

DEFINmON. A number c in R will be called a period of the skew-product T,~ 

if for every T,-invariant function f in L~(R/Z×R)  the equality f ( x , y  + c ) =  

f(x,  y) holds A-almost everywhere. 

The set of periods of T, is a subgroup of the additive group R. It will be 

denoted by P,. We shall show in our proof that every T~-invariant function in 

L~(R/Z × R) is necessarily constant. This will imply ergodicity of T,. 

LEMMA 1. T~ is ergodic if and only if P~ = R. 

PROOF. The proof of this lemma is straightforward and will be omitted. [] 

The following lemma shows how to obtain periods. 

LEMMA 2. Let ~ : [0,1]----~ R be continuously differentiable on the closed inter- 

val [0,1], let ~o(1)~ (p(0), f~)q)(t)dt =0,  and let a be irrational, 0 <  a < 1. 

We put 
p (a) = liminf q , .  ]q,a - p, 1, 

where p, /q,  are the n-th order convergents in the regular continued fraction 

expansion of a. A lways  0<= p(a)<= 1/~/5. 

Then for eoery c E I(a,  ~ ) :=  ] - (1 - p ( a ) ) ( ~ ( 1 ) -  ~ (0))/2, (1 - p(a  ))" 

(~(1) - (p(0))/2[ and for almost all x in R/Z there exists a subsequence (q,,)k~, of 

denominators (which will depend on x)  such that 

lim ~, ~ ( { x + i a } ) = c .  
k ~ O~l~"~qnk 
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We have 

a = p. /q ,  + O,/a.+,q2,, 

where a = [0 ;a , ,a2  . . . .  ] and 0, = ( -  1)"10, I, I 0~ ] < 1. It is e lementa ry  to see that 

q - I  

~q(X ) = k~=~ ' ~o({k /q + ~ + mkO /aq2}), 

where q: = q,, a" = a.+~, 0: = 0, and :~ = {qx}/q, r = [qx] and mk is defined by 

the congruence  mkp. =- k - r rood q,, 0 =< k _-< q, - 1. 

In what follows, n will always be even; the case of odd n is complete ly  

analogous.  

Let  o ) ( 6 ) = s u p { l ~ ' ( y ) - q ~ ' ( z ) l ' l y - z ] < &  y and z in [0,1]}, 8 > 0 ,  denote  

the modulus  of cont inui ty of q~'. It is easy to prove the following identity: 

q - 2  q - 2  q - 2  

q~q(X) = ~--o q~(k/q)+ ~_o~o'(k/q)m,O/aq2+ x~--o q~'(k/q) 

(1) 
+ ~({1 - 1/q + mq ,O/aq2+i} )+ O(~o(2/q)). 

We study the different expressions in (1): 

PROPOSmON 1. Let/:[0.1]---)R be continuously differentiable on the closed 

interval [0.1] and let N be a natural number. Then 

f ( t )d t  = ( l / N )  f ( k / N ) +  ( f (1) - f (O)) /2N + O(o)(1/N)/N),  

to being the modulus of continuity of  f '  on [0,1]. 

The  proof  of this proposi t ion is e lementary .  

Let  us discuss identi ty (1) in the special case 

p ( a )  = lim inf q. I q.a - p. ] = l iminf  I 0. I/a.+, = O. 

Suppose we can choose a subsequence (m)k~, such that 

iim ] 0.~ I/a.~+~ = 0, all n~ are even. 

Then  identi ty (1) holds and we see: the first sum is equal  to 

- ~o (1  - l /q)- (~o ( 1 )  - q ~ ( 0 ) ) / 2  + O(o)(1/q)). 
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The second sum will become arbitrarily small for k ~ ~. The third sum is equal 

to 

{qx}. (~p(1)- q~(0)) + O(to(1/q)). 

The number {1-  1/q + mq_~O/aq2+Y,} will tend to one. 

The sequence ({q.~x})k=>z is uniformly distributed modulo 1 for almost all x in 

R/Z. Thus, for every d E[0,1[, and almost all x, there exists a subsequence 

(which will again be denoted by (q.k)ke~; it depends on x) with limk_~{q,~x} = d. 

As a consequence, 

lim ~p%(x) = (q~(1)- ~p(0))(2d - 1)/2. 

If a subsequence (nk)k--~ of the above type with nk even for all k does not exist, 

then we calculate identity (1) for odd n and continue as indicated. 

Suppose from now on that p ( a ) > 0 .  We study the second sum in (1): 

PROPOSITION 2. Let g'[0,1]--~R be a continuous function on [0,1] with 
modulus of continuity to and let s and q, s < q, be two natural numbers with 
continued fraction expansion s/q = [0;bl . . . . .  bN]. I f  b~ <= A, 1 <= i <-_ N, then 

fo I g(t)dt (1/q)~_~= g ( k / q ) { k s / q } -  ½ <-_ C(g) .  to([(A log q/q)-,]-,/2) 

where C(g) is a constant depending only on g. 

To prove this proposition, one uses well-known estimates for the integration 

error for the continuous function F ( x , y ) =  g(x)y on [0,1] 2 and discrepancy 

estimates for the finite sequence (k/q,{ks/q})~=~ (see [5], chapter 2, §5). 

PROPOSITION 3. Let (q,k)~=~ be a subsequence of (q.),~t such that 

and all nk are even. Then 

' " m lim(O.k/a.k+~q.k) ~ q~ (j/q.k) ,/q.~ =(q~(1)--q~(O))p(a)/2. 
O<--J<-qn k - 2  

If O ( a ) > 0  then there exists a constant A such that a~ _-< A for all i. If n is 
q - t  q -1  

even, then one can write the sequence (mflq.)j"o in the form ({(j - r)s,/q,})j"=o 
with s. = q. - q.-1. Hence there exists a constant B such that for every n and 

every continued fraction coefficient bi of s. /q.  we have bi =< B. We finally apply 
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• q - 1  

Proposition 2 (the slight perturbation of the sequence ({ls/q~})j;o does not 
change the order of the estimate in Proposition 2). 

Let us now complete the proof of Lemma 2. Suppose that we can find a 
subsequence (q~)k~ of (q.),_->~ such that 

(2) lim l O.~ [/a~., = p(a) ,  n~ even for all k. 

Let d be an arbitrary number in the interval [0,1 - p ( a ) [ .  Due to the uniform 

distribution in R/Z of the sequence ({q.kx})k_-', for almost all x in R/Z  there exists 

a subsequence, which will again be denoted by (q,,)~_~,, such that 

lim {q~x} = d. 

This subsequence clearly depends on x. We now put q = q,, in (1) and let k~oo .  

This gives 

lira ~ q.k(x)= (~0 ( 1 ) -  ~o (0 ) ) ( -  1 + p ( a ) +  2d)/2. 

If in (2) there are only finitely many even indices nk, then one calculates identity 

(1) for odd n and proves the equivalent of Proposition 3 for odd nk (in this case 

one chooses s = q,-1 in the proof). The proof of Lemma 2 is then completed in 
the very same manner as above. [] 

LEMMA 3. I ( a, ~o ) C P,. 

PROOF. Let [ be an arbitrary T,-invariant function in L®(R/Z × R) and let 

c ~I(a,~o).  Then, A-almost everywhere, 

(3) [(x + na, y + c )=  f ( x , y  + c -~o . (x ) )  

for all n E N. According to Lemma 2 there exists a sequence of measurable 

functions ( e k ) ~ ,  ek :R/Z---~N, such that 

lim q, ktx)" a = 0 (mod 1), 

Jim ~o q.~,,(x) = c almost everywhere, 

namely ek (x): = min{n :1 c - ~0q. (x)[ < 1/k }, k = 1 ,2 , . . . .  We now replace in (3) n 

by tk (x) and let k tend to infinity. On the left side we consider the limit in 
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L'(R/Z) (y fixed), on the right side in L ' ( [ -  N, N]) (x fixed, N E N arbitrary). 
We finally get 

f(x,y +c)=f(x,y) ;t-almost everywhere. [] 

Lemma 3 clearly implies P, = R, which ends the proof of the theorem. 
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