ON THE ERGODICITY OF A CLASS OF SKEW PRODUCTS

BΥ

P. HELLEKALEK AND G. LARCHER Institut für Mathematik, Universitat Salzburg, A-5020 Salzburg, Austria

ABSTRACT

Let $\varphi:[0,1] \to \mathbf{R}$ have continuous derivative on the closed interval [0,1], $\int_0^1 \varphi(x) dx = 0$, and let α be irrational. If $\varphi(1) \neq \varphi(0)$, then $(x, y) \mapsto (x + \alpha, y + \varphi(x))$ is ergodic on $\mathbf{R}/\mathbf{Z} \times \mathbf{R}$.

Introduction

We shall study skew products of the form

$$T_{\varphi} : \mathbf{R}/\mathbf{Z} \times \mathbf{R} \to \mathbf{R}/\mathbf{Z} \times \mathbf{R},$$
$$T_{\varphi}(x, y) = (x + \alpha, y + \varphi(x)),$$

where α is an irrational number and $\varphi : \mathbf{R}/\mathbf{Z} \to \mathbf{R}$ is a measurable function. In what follows, we shall have normalized Haar measure on the torus \mathbf{R}/\mathbf{Z} , Lebesgue measure on \mathbf{R} and the corresponding product measure λ on the product space $\mathbf{R}/\mathbf{Z} \times \mathbf{R}$.

Suppose we are given a function $\varphi : [0,1] \to \mathbb{R}$, continuous on the closed interval [0,1]. If we replace the map $x \mapsto \varphi(x)$ by $x \mapsto \varphi(\{x\})$, $\{x\}$ the fractional part of x, then the latter map will define a skew-product in the above sense. In agreement with this convention we may state the following result:

THEOREM. Let $\varphi : [0,1] \rightarrow \mathbf{R}$ be continuously differentiable on the closed interval [0,1], let $\int_0^1 \varphi(x) dx = 0$ and suppose that α is irrational. If $\varphi(1) \neq \varphi(0)$, then T_{φ} is ergodic with respect to λ .

COROLLARY. Suppose that φ and α are as in the theorem. Then the factor S_{φ} : $\mathbf{R}/\mathbf{Z} \times \mathbf{R}/\mathbf{Z} \rightarrow \mathbf{R}/\mathbf{Z} \times \mathbf{R}/\mathbf{Z}$, $S_{\varphi}(x, y) = (x + \alpha, y + \varphi(x))$ will be ergodic (with respect

Received October 8, 1985 and in revised form December 23, 1985

to normalized Haar measure). In particular, if $\varphi(x) = \beta x - \beta/2$, $\beta \neq 0$ some real number, then S_{φ} will be ergodic.

This corollary could have been deduced from a well-known result of H. Furstenberg ([3], theorem 2.1), but only for $\beta \neq 0$ an integer.

The proof of our theorem will use heavily results on the uniform distribution modulo one of the sequence $(\{n\alpha\})_{n\geq 0}$ (see the monograph [5]), also some techniques from [1], [2], [3] and [4], but it will not employ a rather "unpleasant" functional equation (see [1], theorem 1; [3], lemma 2.1).

The first author wishes to thank Michael Keane (Delft) for his interest in this work.

PROOF OF THE THEOREM. Let φ and α be as in the theorem, $0 < \alpha < 1$. If *n* is a natural number, then we define

$$\varphi_n(x) = \varphi(x) + \varphi(\{x + \alpha\}) + \cdots + \varphi(\{x + (n-1)\alpha\}) \qquad (x \in \mathbb{R}/\mathbb{Z}).$$

DEFINITION. A number c in **R** will be called a *period* of the skew-product T_{φ} if for every T_{φ} -invariant function f in $L^*(\mathbf{R}/\mathbf{Z} \times \mathbf{R})$ the equality f(x, y + c) = f(x, y) holds λ -almost everywhere.

The set of periods of T_{φ} is a subgroup of the additive group **R**. It will be denoted by P_{φ} . We shall show in our proof that every T_{φ} -invariant function in $L^{\infty}(\mathbf{R}/\mathbf{Z} \times \mathbf{R})$ is necessarily constant. This will imply ergodicity of T_{φ} .

LEMMA 1. T_{φ} is ergodic if and only if $P_{\varphi} = \mathbf{R}$.

PROOF. The proof of this lemma is straightforward and will be omitted. \Box

The following lemma shows how to obtain periods.

LEMMA 2. Let $\varphi : [0,1] \rightarrow \mathbf{R}$ be continuously differentiable on the closed interval [0,1], let $\varphi(1) \neq \varphi(0)$, $\int_0^1 \varphi(t) dt = 0$, and let α be irrational, $0 < \alpha < 1$.

We put

$$\rho(\alpha) = \liminf_{n \to \infty} q_n \cdot |q_n \alpha - p_n|,$$

where p_n/q_n are the n-th order convergents in the regular continued fraction expansion of α . Always $0 \le \rho(\alpha) \le 1/\sqrt{5}$.

Then for every $c \in I(\alpha, \varphi) :=] - (1 - \rho(\alpha))(\varphi(1) - \varphi(0))/2, (1 - \rho(\alpha)) \cdot (\varphi(1) - \varphi(0))/2[$ and for almost all x in **R**/**Z** there exists a subsequence $(q_{n_k})_{k \ge 1}$ of denominators (which will depend on x) such that

$$\lim_{k\to\infty}\sum_{0\leq i\leq q_{n_k}}\varphi\left(\{x+i\alpha\}\right)=c.$$

PROOF. We have

$$\alpha = p_n/q_n + \theta_n/a_{n+1}q_n^2$$

where $\alpha = [0; a_1, a_2, ...]$ and $\theta_n = (-1)^n |\theta_n|, |\theta_n| < 1$. It is elementary to see that

$$\varphi_q(x) = \sum_{k=0}^{q-1} \varphi(\{k/q + \bar{x} + m_k\theta/aq^2\}),$$

where $q:=q_n$, $a:=a_{n+1}$, $\theta:=\theta_n$ and $\bar{x}=\{qx\}/q$, r=[qx] and m_k is defined by the congruence $m_k p_n \equiv k - r \mod q_n$, $0 \leq k \leq q_n - 1$.

In what follows, n will always be *even*; the case of odd n is completely analogous.

Let $\omega(\delta) = \sup\{|\varphi'(y) - \varphi'(z)| : |y - z| < \delta, y \text{ and } z \text{ in } [0,1]\}, \delta > 0$, denote the modulus of continuity of φ' . It is easy to prove the following identity:

(1)

$$\varphi_{q}(x) = \sum_{k=0}^{q-2} \varphi(k/q) + \sum_{k=0}^{q-2} \varphi'(k/q) m_{k} \theta/aq^{2} + \bar{x} \sum_{k=0}^{q-2} \varphi'(k/q) + \varphi(\{1 - 1/q + m_{q-1}\theta/aq^{2} + \bar{x}\}) + O(\omega(2/q)).$$

We study the different expressions in (1):

PROPOSITION 1. Let $f:[0,1] \rightarrow \mathbf{R}$ be continuously differentiable on the closed interval [0,1] and let N be a natural number. Then

$$\int_0^1 f(t)dt = (1/N) \sum_{k=0}^{N-1} f(k/N) + (f(1) - f(0))/2N + O(\omega(1/N)/N),$$

 ω being the modulus of continuity of f' on [0,1].

The proof of this proposition is elementary.

Let us discuss identity (1) in the special case

$$\rho(\alpha) = \liminf_{n \to \infty} q_n |q_n \alpha - p_n| = \liminf_{n \to \infty} |\theta_n| / a_{n+1} = 0.$$

Suppose we can choose a subsequence $(n_k)_{k\geq 1}$ such that

$$\lim_{k\to\infty} |\theta_{n_k}|/a_{n_k+1} = 0, \quad \text{all } n_k \text{ are even.}$$

Then identity (1) holds and we see: the first sum is equal to

$$-\varphi(1-1/q)-(\varphi(1)-\varphi(0))/2+O(\omega(1/q)).$$

The second sum will become arbitrarily small for $k \rightarrow \infty$. The third sum is equal to

$$\{qx\}\cdot(\varphi(1)-\varphi(0))+O(\omega(1/q)).$$

The number $\{1 - 1/q + m_{q-1}\theta/aq^2 + \bar{x}\}$ will tend to one.

The sequence $(\{q_{n_k}x\})_{k\geq 1}$ is uniformly distributed modulo 1 for almost all x in **R**/**Z**. Thus, for every $d \in [0,1[$, and almost all x, there exists a subsequence (which will again be denoted by $(q_{n_k})_{k\geq 1}$; it depends on x) with $\lim_{k\to\infty} \{q_{n_k}x\} = d$. As a consequence,

$$\lim_{k \to \infty} \varphi_{q_{n_k}}(x) = (\varphi(1) - \varphi(0))(2d - 1)/2.$$

If a subsequence $(n_k)_{k\geq 1}$ of the above type with n_k even for all k does not exist, then we calculate identity (1) for odd n and continue as indicated.

Suppose from now on that $\rho(\alpha) > 0$. We study the second sum in (1):

PROPOSITION 2. Let $g:[0,1] \rightarrow \mathbf{R}$ be a continuous function on [0,1] with modulus of continuity ω and let s and q, s < q, be two natural numbers with continued fraction expansion $s/q = [0; b_1, ..., b_N]$. If $b_i \leq A$, $1 \leq i \leq N$, then

$$\left| (1/q) \sum_{k=1}^{q} g(k/q) \{ ks/q \} - \frac{1}{2} \int_{0}^{1} g(t) dt \right| \leq C(g) \cdot \omega([(A \log q/q)^{-1}]^{-1/2})$$

where C(g) is a constant depending only on g.

To prove this proposition, one uses well-known estimates for the integration error for the continuous function F(x, y) = g(x)y on $[0,1]^2$ and discrepancy estimates for the finite sequence $(k/q, \{ks/q\})_{k=1}^{q}$ (see [5], chapter 2, §5).

PROPOSITION 3. Let $(q_{n_k})_{k\geq 1}$ be a subsequence of $(q_n)_{n\geq 1}$ such that

$$\lim_{k\to\infty} |\theta_{n_k}|/a_{n_{k+1}} = \rho(\alpha)$$

and all n_k are even. Then

$$\lim_{k \to \infty} (\theta_{n_k} / a_{n_k+1} q_{n_k}) \sum_{0 \le j \le q_{n_k-2}} \varphi'(j/q_{n_k}) m_j/q_{n_k} = (\varphi(1) - \varphi(0)) \rho(\alpha)/2.$$

If $\rho(\alpha) > 0$ then there exists a constant A such that $a_i \leq A$ for all *i*. If *n* is even, then one can write the sequence $(m_i/q_n)_{i=0}^{q_n-1}$ in the form $(\{(j-r)s_n/q_n\})_{i=0}^{q_n-1}$ with $s_n = q_n - q_{n-1}$. Hence there exists a constant B such that for every n and every continued fraction coefficient b_i of s_n/q_n we have $b_i \leq B$. We finally apply

Proposition 2 (the slight perturbation of the sequence $(\{js/q_n\})_{j=0}^{q_n-1}$ does not change the order of the estimate in Proposition 2).

Let us now complete the proof of Lemma 2. Suppose that we can find a subsequence $(q_{n_k})_{k\geq 1}$ of $(q_n)_{n\geq 1}$ such that

(2)
$$\lim_{k \to \infty} |\theta_{n_k}| / a_{n_{k+1}} = \rho(\alpha), \qquad n_k \text{ even for all } k.$$

Let d be an arbitrary number in the interval $[0, 1 - \rho(\alpha)]$. Due to the uniform distribution in \mathbb{R}/\mathbb{Z} of the sequence $(\{q_{n_k}x\})_{k\geq 1}$ for almost all x in \mathbb{R}/\mathbb{Z} there exists a subsequence, which will again be denoted by $(q_{n_k})_{k\geq 1}$, such that

$$\lim_{k\to\infty} \{q_{n_k}x\} = d.$$

This subsequence clearly depends on x. We now put $q = q_{n_k}$ in (1) and let $k \to \infty$. This gives

$$\lim_{k\to\infty}\varphi_{q_{n_k}}(x)=(\varphi(1)-\varphi(0))(-1+\rho(\alpha)+2d)/2.$$

If in (2) there are only finitely many even indices n_k , then one calculates identity (1) for odd n and proves the equivalent of Proposition 3 for odd n_k (in this case one chooses $s = q_{n-1}$ in the proof). The proof of Lemma 2 is then completed in the very same manner as above.

LEMMA 3. $I(\alpha, \varphi) \subset P_{\varphi}$.

PROOF. Let f be an arbitrary T_{φ} -invariant function in $L^{\infty}(\mathbb{R}/\mathbb{Z} \times \mathbb{R})$ and let $c \in I(\alpha, \varphi)$. Then, λ -almost everywhere,

(3)
$$f(x + n\alpha, y + c) = f(x, y + c - \varphi_n(x))$$

for all $n \in \mathbb{N}$. According to Lemma 2 there exists a sequence of measurable functions $(\varepsilon_k)_{k\geq 1}, \varepsilon_k : \mathbb{R}/\mathbb{Z} \to \mathbb{N}$, such that

$$\lim_{k \to \infty} q_{\epsilon_k(x)} \cdot \alpha = 0 \pmod{1},$$
$$\lim_{k \to \infty} \varphi_{q_{\epsilon_k(x)}}(x) = c \text{ almost everywhere,}$$

namely $\varepsilon_k(x) := \min\{n : |c - \varphi_{q_n}(x)| < 1/k\}, k = 1, 2, \dots$ We now replace in (3) n by $\varepsilon_k(x)$ and let k tend to infinity. On the left side we consider the limit in

 $L'(\mathbf{R}/\mathbf{Z})$ (y fixed), on the right side in L'([-N,N]) (x fixed, $N \in \mathbb{N}$ arbitrary). We finally get

$$f(x, y + c) = f(x, y)$$
 λ -almost everywhere.

Lemma 3 clearly implies $P_{\varphi} = \mathbf{R}$, which ends the proof of the theorem.

REFERENCES

1. H. Anzai, Ergodic skew product transformations on the torus, Osaka Math. J. 3 (1951), 83-99.

2. J. P. Conze, Ergodicité d'une transformation cylindrique, Bull. Soc. Math. France 108 (1980), 441-456.

3. H. Furstenberg, Strict ergodicity and transformations of the torus, Amer. J. Math. 83 (1961), 573-601.

4. P. Hellekalek, Ergodicity of a class of cylinder flows related to irregularities of distribution, to appear in Comp. Math.

5. L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, John Wiley & Sons, New York, 1974.