ON THE ERGODICITY OF A CLASS OF SKEW PRODUCTS

BY

P. HELLEKALEK AND G. LARCHER *lnstitut fiir Mathematik, Universitat Salzburg, A-5020 Salzburg, Austria*

ABSTRACT

Let $\varphi:[0,1] \rightarrow \mathbb{R}$ have continuous derivative on the closed interval [0,1], $f_a^{\dagger} \varphi(x) dx = 0$, and let α be irrational. If $\varphi(1) \neq \varphi(0)$, then $(x, y) \mapsto (x + \alpha, y + \alpha)$ $\varphi(x)$) is ergodic on **R/Z** × **R**.

Introduction

We shall study skew products of the form

$$
T_{\varphi} : \mathbf{R}/\mathbf{Z} \times \mathbf{R} \to \mathbf{R}/\mathbf{Z} \times \mathbf{R},
$$

$$
T_{\varphi}(x, y) = (x + \alpha, y + \varphi(x)),
$$

where α is an irrational number and $\varphi : \mathbb{R}/\mathbb{Z} \to \mathbb{R}$ is a measurable function. In what follows, we shall have normalized Haar measure on the torus *R/Z,* Lebesgue measure on **R** and the corresponding product measure λ on the product space *R/Z x R.*

Suppose we are given a function $\varphi:[0,1] \rightarrow \mathbb{R}$, continuous on the closed interval [0,1]. If we replace the map $x \mapsto \varphi(x)$ by $x \mapsto \varphi({x})$, $\{x\}$ the fractional part of x, then the latter map will define a skew-product in the above sense. In agreement with this convention we may state the following result:

THEOREM. Let φ : $[0,1] \rightarrow \mathbf{R}$ *be continuously differentiable on the closed interval* [0,1], *let* $\int_0^1 \varphi(x) dx = 0$ *and suppose that* α *is irrational. If* $\varphi(1) \neq \varphi(0)$, *then* T_{φ} *is ergodic with respect to* λ .

COROLLARY. *Suppose that* φ *and* α *are as in the theorem. Then the factor* S_e *:* $R/Z \times R/Z \rightarrow R/Z \times R/Z$, $S_r(x, y) = (x + \alpha, y + \varphi(x))$ will be ergodic (with respect

Received October 8, 1985 and in revised form December 23, 1985

to normalized Haar measure). In particular, if $\varphi(x) = \beta x - \beta/2$, $\beta \neq 0$ *some real number, then* S_e will be ergodic.

This corollary could have been deduced from a well-known result of H. Furstenberg ([3], theorem 2.1), but only for $\beta \neq 0$ an integer.

The proof of our theorem will use heavily results on the uniform distribution modulo one of the sequence $({n\alpha})_{n\geq0}$ (see the monograph [5]), also some techniques from [1], [2], [3] and [4], but it will not employ a rather "unpleasant" functional equation (see [1], theorem 1; [3], lemma 2.1).

The first author wishes to thank Michael Keane (Delft) for his interest in this work.

PROOF OF THE THEOREM. Let φ and α be as in the theorem, $0 < \alpha < 1$. If n is a natural number, then we define

$$
\varphi_n(x) = \varphi(x) + \varphi(\{x + \alpha\}) + \cdots + \varphi(\{x + (n-1)\alpha\}) \qquad (x \in \mathbb{R}/\mathbb{Z}).
$$

DEFINITION. A number c in **R** will be called a *period* of the skew-product T_{φ} if for every T_{φ} -invariant function f in $L^{\infty}(\mathbb{R}/\mathbb{Z}\times\mathbb{R})$ the equality $f(x, y + c) =$ $f(x, y)$ holds λ -almost everywhere.

The set of periods of T_e is a subgroup of the additive group **R**. It will be denoted by P_{φ} . We shall show in our proof that every T_{φ} -invariant function in $L^{\infty}(\mathbb{R}/\mathbb{Z} \times \mathbb{R})$ is necessarily constant. This will imply ergodicity of T_{φ} .

LEMMA 1. T_{φ} is ergodic if and only if $P_{\varphi} = \mathbf{R}$.

PROOF. The proof of this lemma is straightforward and will be omitted. \Box

The following lemma shows how to obtain periods.

LEMMA 2. Let $\varphi : [0,1] \rightarrow \mathbb{R}$ be continuously differentiable on the closed inter*val* $[0,1]$, *let* $\varphi(1) \neq \varphi(0)$, $\int_0^1 \varphi(t) dt = 0$, *and let* α *be irrational*, $0 < \alpha < 1$.

We put

$$
\rho(\alpha) = \liminf_{n \to \infty} q_n \cdot |q_n \alpha - p_n|,
$$

where p_n/q_n are the n-th order convergents in the regular continued fraction *expansion of* α *. Always* $0 \leq \rho(\alpha) \leq 1/\sqrt{5}$.

Then for every $c \in I(\alpha, \varphi) :=] - (1 - \rho(\alpha))(\varphi(1) - \varphi(0))/2, (1 - \rho(\alpha))$. $(\varphi(1) - \varphi(0))/2$ *and for almost all x in R/Z there exists a subsequence* $(q_{n_k})_{k \geq 1}$ of *denominators (which will depend on x) such that*

$$
\lim_{k\to\infty}\sum_{0\leq i\leq q_{n_k}}\varphi(\lbrace x+i\alpha\rbrace)=c.
$$

PROOF. We have

$$
\alpha = p_n/q_n + \theta_n/a_{n+1}q_n^2,
$$

where $\alpha = [0; a_1, a_2, \ldots]$ and $\theta_n = (-1)^n |\theta_n|, |\theta_n| < 1$. It is elementary to see that

$$
\varphi_q(x)=\sum_{k=0}^{q-1}\varphi(\lbrace k/q+\bar{x}+m_k\theta/aq^2\rbrace),
$$

where $q_i = q_n$, $a_i = a_{n+1}$, $\theta_i = \theta_n$ and $\bar{x} = \{qx\}/q$, $r = [qx]$ and m_k is defined by the congruence $m_k p_n \equiv k - r \mod q_n$, $0 \le k \le q_n - 1$.

In what follows, n will always be *even;* the case of odd n is completely analogous.

Let $\omega(\delta)$ = sup{ $|\varphi'(y)-\varphi'(z)|$: $|y-z|<\delta$, y and z in [0,1]}, $\delta > 0$, denote the modulus of continuity of φ' . It is easy to prove the following identity:

(1)

$$
\varphi_q(x) = \sum_{k=0}^{q-2} \varphi(k/q) + \sum_{k=0}^{q-2} \varphi'(k/q) m_k \theta/aq^2 + \bar{x} \sum_{k=0}^{q-2} \varphi'(k/q)
$$

$$
+ \varphi(\{1 - 1/q + m_{q-1} \theta/aq^2 + \bar{x}\}) + O(\omega(2/q)).
$$

We study the different expressions in (1):

PROPOSITION 1. Let $f:[0,1] \rightarrow \mathbb{R}$ be continuously differentiable on the closed *interval* [0.1] *and let N be a natural number. Then*

$$
\int_0^1 f(t)dt = (1/N)\sum_{k=0}^{N-1} f(k/N) + (f(1) - f(0))/2N + O(\omega(1/N)/N),
$$

to being the modulus of continuity of f' on [0,1].

The proof of this proposition is elementary.

Let us discuss identity (1) in the special case

$$
\rho(\alpha) = \liminf_{n \to \infty} q_n |q_n \alpha - p_n| = \liminf_{n \to \infty} |\theta_n|/a_{n+1} = 0.
$$

Suppose we can choose a subsequence $(n_k)_{k\geq 1}$ such that

$$
\lim_{k\to\infty}|\theta_{n_k}|/a_{n_k+1}=0, \qquad \text{all } n_k \text{ are even.}
$$

Then identity (1) holds and we see: the first sum is equal to

$$
-\varphi(1-1/q)-(\varphi(1)-\varphi(0))/2+O(\omega(1/q)).
$$

The second sum will become arbitrarily small for $k \rightarrow \infty$. The third sum is equal to

$$
\{qx\}\cdot(\varphi(1)-\varphi(0))+O(\omega(1/q)).
$$

The number $\{1 - 1/q + m_{q-1}\theta/aq^2 + \bar{x}\}\$ will tend to one.

The sequence $({q_{n_k}x})_{k\geq 1}$ is uniformly distributed modulo 1 for almost all x in **R/Z.** Thus, for every $d \in [0,1]$, and almost all x, there exists a subsequence (which will again be denoted by $(q_{n_k})_{k\geq 1}$; it depends on x) with $\lim_{k\to\infty} {q_{n_k}x} = d$. As a consequence,

$$
\lim_{\theta \to 0} \varphi_{q_n}(x) = (\varphi(1) - \varphi(0))(2d - 1)/2.
$$

If a subsequence $(n_k)_{k\geq 1}$ of the above type with n_k even for all k does not exist, then we calculate identity (1) for odd *n* and continue as indicated.

Suppose from now on that $\rho(\alpha) > 0$. We study the second sum in (1):

PROPOSITION 2. Let $g:[0,1] \rightarrow \mathbb{R}$ be a continuous function on [0,1] with *modulus of continuity* ω *and let s and q, s* < *q, be two natural numbers with continued fraction expansion s/q =* [0; $b_1, ..., b_N$]. If $b_i \leq A, 1 \leq i \leq N$, then

$$
\left| (1/q) \sum_{k=1}^q g(k/q) \{ k s/q \} - \frac{1}{2} \int_0^1 g(t) dt \right| \leq C(g) \cdot \omega \left(\left[(A \log q/q)^{-1} \right]^{-1/2} \right)
$$

where $C(g)$ is a constant depending only on g.

To prove this proposition, one uses well-known estimates for the integration error for the continuous function $F(x, y) = g(x)y$ on $[0,1]^2$ and discrepancy estimates for the finite sequence $(k/q, \{ks/q\})_{k=1}^{q}$ (see [5], chapter 2, §5).

PROPOSITION 3. Let $(q_{n_k})_{k\geq 1}$ be a subsequence of $(q_n)_{n\geq 1}$ *such that*

$$
\lim_{k\to\infty}|\theta_{n_k}|/a_{n_k+1}=\rho(\alpha)
$$

and all nk are even. Then

$$
\lim_{k\to\infty}(\theta_{n_k}/a_{n_k+1}q_{n_k})\sum_{0\leq j\leq q_{n_k-2}}\varphi'(j/q_{n_k})m_j/q_{n_k}=(\varphi(1)-\varphi(0))\rho(\alpha)/2.
$$

If $\rho(\alpha) > 0$ then there exists a constant A such that $a_i \leq A$ for all i. If n is even, then one can write the sequence $(m_j/q_n)_{j=0}^{q_n-1}$ in the form $({(j - r)s_n/q_n})_{j=0}^{q_n-1}$ with $s_n = q_n - q_{n-1}$. Hence there exists a constant B such that for every n and every continued fraction coefficient b_i of s_n/q_n we have $b_i \leq B$. We finally apply

Proposition 2 (the slight perturbation of the sequence $({is/q_n})_{i=0}^{q_n-1}$ does not change the order of the estimate in Proposition 2).

Let us now complete the proof of Lemma 2. Suppose that we can find a subsequence $(q_{n_k})_{k\geq 1}$ of $(q_n)_{n\geq 1}$ such that

(2)
$$
\lim_{k \to \infty} |\theta_{n_k}|/a_{n_{k+1}} = \rho(\alpha), \qquad n_k \text{ even for all } k.
$$

Let d be an arbitrary number in the interval $[0,1 - \rho(\alpha)]$. Due to the uniform distribution in **R/Z** of the sequence $({q_{n_k}x})_{k\geq 1}$ for almost all x in **R/Z** there exists a subsequence, which will again be denoted by $(q_{n_k})_{k\geq 1}$, such that

$$
\lim_{n\to\infty} \{q_{n_k}x\} = d.
$$

This subsequence clearly depends on x. We now put $q = q_{n_k}$ in (1) and let $k \rightarrow \infty$. This gives

$$
\lim_{k \to \infty} \varphi_{q_{n_k}}(x) = (\varphi(1) - \varphi(0))(-1 + \rho(\alpha) + 2d)/2.
$$

If in (2) there are only finitely many even indices n_k , then one calculates identity (1) for odd *n* and proves the equivalent of Proposition 3 for odd n_k (in this case one chooses $s = q_{n-1}$ in the proof). The proof of Lemma 2 is then completed in the very same manner as above. \Box

LEMMA 3. $I(\alpha, \varphi) \subset P_{\varphi}$.

PROOF. Let f be an arbitrary T_{φ} -invariant function in $L^{\infty}(\mathbb{R}/\mathbb{Z} \times \mathbb{R})$ and let $c \in I(\alpha, \varphi)$. Then, λ -almost everywhere,

(3)
$$
f(x + n\alpha, y + c) = f(x, y + c - \varphi_n(x))
$$

for all $n \in \mathbb{N}$. According to Lemma 2 there exists a sequence of measurable functions $(\varepsilon_k)_{k\geq 1}$, ε_k : $\mathbb{R}/\mathbb{Z} \rightarrow \mathbb{N}$, such that

$$
\lim_{k \to \infty} q_{\epsilon_k(x)} \cdot \alpha = 0 \quad \text{(mod 1)},
$$
\n
$$
\lim_{k \to \infty} \varphi_{q_{\epsilon_k(x)}}(x) = c \quad \text{almost everywhere},
$$

namely $\varepsilon_k(x)$: = min{n : $|c - \varphi_{q_n}(x)| < 1/k$ }, $k = 1, 2, \dots$. We now replace in (3) n by $\varepsilon_k(x)$ and let k tend to infinity. On the left side we consider the limit in

 $L^1(\mathbb{R}/\mathbb{Z})$ (y fixed), on the right side in $L^1([-N,N])$ (x fixed, $N \in \mathbb{N}$ arbitrary). **We finally get**

 $f(x, y + c) = f(x, y)$ λ -almost everywhere.

Lemma 3 clearly implies $P_{\varphi} = \mathbf{R}$, which ends the proof of the theorem.

REFERENCES

1. H. Anzai, *Ergodic skew product transformations on the torus,* Osaka Math. J. 3 (1951), 83-99.

2. J. P. Conze, *Ergodicité d'une transformation cylindrique*, Bull. Soc. Math. France 108 (1980), 441-456.

3. H. Furstenberg, *Strict ergodicity and trans[ormations of the torus,* Amer. J. Math. 83 (1961), 573-601.

4. P. Hellekalek, *Ergodicity of a class of cylinder flows related to irregularities of distribution*, to appear in Comp. Math.

5. L. Kuipers and H. Niederreiter, *Uniform Distribution of Sequences*, John Wiley & Sons, New York, 1974.